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We systematically compute the power spectra of the one-dimensional elementary cellular automata intro-
duced by Wolfram. On the one hand our analysis reveals that one automaton displays 1/ f spectra though
considered as trivial, and on the other hand that various automata classified as chaotic or complex display no
1/ f spectra. We model the results generalizing the recently investigated Sierpinski signal to a class of fractal
signals that are tailored to produce 1/ f� spectra. From the widespread occurrence of �elementary� cellular
automata patterns in chemistry, physics, and computer sciences, there are various candidates to show spectra
similar to our results.
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In 1984 Wolfram introduced the so-called elementary cel-
lular automata �ECA�, opening a field still being vividly ac-
tive 20 years thereafter �1�. Wolfram’s more recent popular
book �2� has attracted great attention, although the opinion of
the work’s merits is divided among the scientific community
�3�. ECA are discussed extensively in the context of compu-
tationally irreducibility of physical systems �4�, e.g., it is
proven that in the Turing sense �5� rule 110 �being one of the
possible 256 ECA� is an universal computer �1�. Moreover,
possible transformations between difference equations and
�E�CA have been investigated �6�. Among the numerous
physical applications we mention here only �kinetic phase
transitions in� catalytic reaction-diffusion systems �7–10�,
deterministic surface growth �11�, branching and annihilating
random walks �12�, and random boolean networks �13�.

It is important to note that Wolfram’s ECA are often stud-
ied for a particular boundary condition on a finite array
which disturbs the pure evolution of an ECA. As a result,
some automata display complex behavior, while other are
simply periodic. Though there is no algorithm for classifying
a given elementary automaton, Wolfram conjectured that
ECA can be grouped into four classes of complexity:

Class 1: steady state; class 2: periodic or nested struc-
tures; class 3: random �“chaotic”� behavior; class 4: mixture
of random and periodic behavior.

The first class represents automata that are �for almost all
initial conditions� trivial in the sense being static or finally
evolve to the some steady state. Those rules that belong to
the second class produce simple periodic or self-similar, i.e.,
fractal, structures. The third class includes rules exhibiting
random patterns, e.g., a particular rule �number 30� is used to
generate random numbers in MATHEMATICA. The fourth class
is somehow a mixture of classes 2 and 3 generating the most
complex structures. For more rigorous classifications we re-
fer the reader to the literature �4,14�.

Since the coining paper of Bak, Tang, and Wiesenfeld
�15�, there has been considerable interest in the long-time
behavior of cellular automata, especially for occurrence of

long range correlations, and correspondingly for power spec-
tra exhibiting a power law decay S�f�� f−� with ��1.0.
Despite the abundance in nature, systems exhibiting spectra
with exponents near to 1 are poorly understood. While the
mechanisms generating 1/ f� spectra may be substantially
different from each other, some models and the observed
1/ f� power laws have become a paradigm for complex dy-
namical systems in general �16�.

Definition of ECA. An elementary cellular automaton con-
sists of an infinite one-dimensional lattice of cells being ei-
ther black �1� or white �0�, and a deterministic update rule.
At each discrete time step, a cell is updated, xn

t →xn
t+1, ac-

cording to the state of the next-neighbor sites and its own
state one time step before:

xn
t+1 = f�xn+1

t ,xn
t ,xn−1

t � , �1�

where f �the rule� is determined by eight bits being the out-
put of the possible input bits 000, 001, …, 111. As a conse-
quence, there are 256 �ECA� rules that are named rule 0–255.
In this paper we focus on rules 90 and 150 defined by

xn
t+1 = �xn−1

t + rxn
t + xn+1

t �mod 2, �2�

where r=0 defines rule 90 and r=1 rule 150, respectively. As
demonstrated earlier, rule 90 can be interpreted in the context
of catalytic processes. A process �catalysis� is initiated �or
continued� when exactly one neighbor site is active whereas
the process �catalysis� is stopped when too many, i.e., two, or
too less, i.e., no, neighbor sites are active �10�.

A similar interpretation may be given for rule 150. Cataly-
sis at xn

t is stopped when no or two neighbor sites �now xn
t

included� are active and it is initiated �or continued� when
one or three sites are active. Note that both rules mimic local
self-limiting reaction processes �9,17�.

Spectra of sum signals. It is known that ECA on finite
lattices for various boundary conditions display no 1/ f�

spectra �1�. Rather than evaluating the rules on finite lattices
we calculate the evolution on an infinite lattice. More pre-
cisely, we focus on a sum signal defined as the total (in)ac-
tivity, magnetization, etc. of the whole system:*Electronic address: claussen@theo-physik.uni-kiel.de
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X�t� = �
n

xn
t . �3�

We have systematically investigated all 256 rules, for local-
ized initial conditions �i.e., single 1, 11, 101, 111, …�, as
follows. The sum signal for nontrivial rules exhibits increas-
ing mean �X	t well fitted by a power law in time �24�. Con-
sequently, we focus on the detrended sum signal defined by

Y�t� = X�t� − f�t� , �4�

where the coefficients of f�t�=atb are fitted. However, for
some ECA Y�t� possesses an increasing mean variance. Thus
we investigate for each automaton another signal �and its
spectrum�

Z�t� = Y�t�/�Y	
t−l+1,t+l�
1/2 , �5�

where 2l is the width of a sliding window that normalizes the
fluctuations of the detrended signal Y�t� according to the
method of detrended fluctuation analysis �DFA� applied for
nonequilibrium processes �18�. We have calculated the cor-
responding power spectra �X����2, �Y����2, and �Z����2 for all
256 ECA. It turns out that that 25 of the 256 rules exhibit
1 / f� spectra whereas 231 do not �see Table I�. Twenty-three
of those automata that exhibit 1 / f� spectra display Sierpinski
patterns, i.e., well studied self-similar structures �10�. Their
spectra are extensively investigated in Ref. �10� exhibiting
1/ f� spectra with exponents 1.15±0.05.

The two other rules, i.e., 105 and 150, show a different
behavior. Here we focus on rule 150 �25�. The first 128 time
steps of the evolution for a single 1 as the initial condition is
depicted in Fig. 1 �upper inset�.

It is a Sierpinski-like self-similar structure. However,
the fractal dimension differs from the Sierpinski gasket
�d=1.58� being the golden mean d= �1+
5� /2�1.69. Figure
1 shows also the corresponding signals X�t� and Z�t�. The
spectrum Y��� is displayed in Fig. 2. For � not too small, the
averaged spectrum exhibits a straight line in the log-log plot
verifying a power law behavior. Depending on the average
process and fit range we obtain a fit exponent of about
�=1.27±0.05. Due to dominating randomness, members of
classes 3 and 4 typically produce thermal 1 / f2 spectra �see
Fig. 2�.

Fractal signals produce 1/ f� spectra. All ECA that are
capable to produce a self-similar structure exhibit 1 / f� spec-
tra. Hence one may naively expect that every �self-similar�
fractal structure produces 1/ f� spectra. However, it is impor-
tant to know that this is not the case. There are many fractals
like the Koch snow flake, Cantor dust, etc., exhibiting no
1/ f� spectra because their respective sum signals simply
grow exponentially �19�.

Rather than a geometric approach we focus on fractal sig-
nals itself. Thus we now generalize the recently investigated
Sierpinski signal �10�. As we will see, the generalized signal
is capable to model 1 / f� spectra producing spectra with con-
tinuously tunable power law exponents. More precisely, we
consider the signal

X��t� = 2��j�j
t�, �6�

where � j is the jth bit of the binary decomposition of the
discrete time t=0, 1, 2, … . For �=1 we have shown recently

TABLE I. Rules that produce 1/ f� spectra. Rules in brackets
belong to one equivalence class. Rules 105 and 150 �bold� produce
spectra with power law exponents about �=1.3. All other listed
rules exhibit spectra with exponents about �=1.2. The 231 rules not
listed are not capable to produce 1/ f� spectra, e.g., most of the
spectra display no power law decay, or exhibit thermal 1/ f2 spectra
�see Fig. 2�.

Class ECA rule number

1 218

2 �26, 82, 167, 181�, �154, 210�
3 �18, 183�, �22, 151�, �60, 102, 153, 195�, �90,

165�, �122, 161�, �126, 129�, �146, 182�, 105, 150

4 FIG. 1. The first 128 time steps of the time signal X�t� generated
by rule 150. Upper inset: self-similar structure generated by rule
150 for the first 64 time steps. Lower inset: normalized signal Z�t�;
the straight line indicates Z=0.

FIG. 2. Rule 150 and rule 110: Averaged power spectrum of Y�t�
up to T /8 for T=218 using �incommensurable� 1.1k bins, i.e., the kth
interval is defined by ��1.1k� , �1.1k+1�� where the brackets � � denote
upwards rounded integer values �ceiling function�. The inset shows
the rule 150 spectrum, averaged using 2k bins, i.e., the kth interval
is defined by �2k ,2k+1−1�. Both averages correspond to a constant
�� /� ratio. The graphs are well fitted by a power law with expo-
nent �=1.27. The thermal 1 / f2 decay of rule 110 �gray� as a typical
member of class 4 is shown for comparison.
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both numerically and analytically that the signal exhibits
1 / f� spectra with � close to unity. The special ansatz, Eq.
�6�, represents a straightforward generalization of the closed
form for the sum signal of the Sierpinski pattern produced by
rule 90 �10�. In the next paragraph we show that for devia-
tions from �=1 the signal can produce 1/ f� spectra within a
wide range of exponents �.

In analogy to the calculation in Ref. �10�, we calculate the
periodogram X��� of the time signal �6� analytically:

X��� = �
t=0

2N−1

ei�tX��t�

= �

�0,…,�N−1�

exp�i��
j

� j2
j�X���

j

� j2
j�

= �

�0,…,�N−1�

�
j=0

N−1

exp�� j�i�2 j + � ln 2��

= �
j=0

N−1

�

�j�

exp�� j�i�2 j + � ln 2��

= �
j=0

N−1

�1 + exp�i�2 j + � ln 2�� . �7�

The absolute value of X��� simplifies to a trigonometric
product which the logarithm converts into a sum:

ln�X����2 = �
j=0

N−1

ln�1 + 22� + 21+� cos��2 j�� . �8�

We roughly estimate the sum in Eq. �8� replacing the sum by
an integral, and substituting y=�2 j,

ln�X����2 � �
0

N−1

ln�1 + 22� + 21+� cos��2 j��dj �9�

=�
�

�2N−1 ln�1 + 22� + 21+� cos y�
y ln 2

dy . �10�

As ln�a+bx�� ln�a�+ �b /a�x for �x��1, we obtain

ln�X����2 �
ln�1 + 22��

ln 2
�

�

�2N−1 dy

y

+
21+�

�1 + 22��ln 2
�

�

�2N−1 cos�y�
y

dy . �11�

The integral over the integral cosine is nearly independent of
the upper boundary for high values of the boundary. Thus we
can substitute the upper boundary �2N−1 by some
N-dependent constant, say cN�1. Finally, replacing the co-
sine by one yields immediately a rough approximation of the
power spectrum:

�X����2 � c�N�−�21+��/�1+22��ln 2. �12�

For a given power law exponent 0���1/ ln 2�1.44, we
obtain � from Eq. �12� as

� =

ln�1 + 
1 − �2�ln 2�2

� ln 2
�

ln 2
. �13�

To generate signals with goal exponents, e.g., �1=0.8, �2
=1.0, �3=1.2, one can use the corresponding value of � ac-
cording to Eq. �13�. Figure 3 shows the spectrum of the
detrended signal �6� for �2=1.311 84 �corresponding to �2
=1.0�. For �1=1.724 25 and �3=0.902 749 the individual
spectra exhibit similar graphs �not shown�. Depending on the
averaging the power law fits giving �1=0.8±0.1, �2
=0.95±0.05, and �3=1.2±0.05, are in good agreement with
the theoretical results.

Two-dimensional automaton. While one-dimensional ex-
perimental setups as in Ref. �17� seem to be quite artificial
for �self-limiting� catalytic processes, two-dimensional dy-
namics is more generic �23�. Consider the Sierpinski dynam-
ics on a �i , j� plane:

xi,j
t+1 = �xi+1,j

t + xi−1,j
t + xi,j+1

t + xi,j−1
t �mod 2. �14�

For a single 1 as initial condition on a plane the sum signal
X2D�t�=�i,j xi,j

t generates the sequence

X2D�t� = 1,4,4,16,4,16,16,64,… . �15�

More precisely, the recurrence relation generating Eq. �15� is
given by un→un+1= �un ,4un� for u0= �1�.

First, if the factor 4 is replaced by 2, the relation becomes
equivalent to the one-dimensional-Sierpinski signal X1D�t� in
Ref. �10�. Second, we obtain X2D�t�=X1D�t�2 and therefore
X2D�t�=X�=2�t�. Thus the generalized Sierpinski pattern in
two dimensions exhibits 1 / f� spectra with exponents around
the value according to Eq. �12� for �=2, that is, �=0.679.
We numerically verified the value obtaining exponents
around �=0.7 as expected.

Multifractality. The spectral analysis applied so far as-
sumes implicitly monofractal signals. Multifractal spectra
�20� for signals X��t�, being binomial multifractal series, can
be calculated analytically �21,22�:

FIG. 3. Averaged power spectrum of the detrended signal �6� for
�=1.311 84 up to T /8, T=220 using �incommensurable� 1.1k bins.
The inset shows the spectrum, averaged using 2k bins. Both corre-
spond to a constant �� /� ratio. Fit exponents of about �=0.93. The
corresponding spectrum for the variance detrended signal exhibits
power spectra around �=1.0. The theoretical exponent is �=1.0.
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f��� = d„	���…, where �16�

d�	� = −
	 ln�	� + �1 − 	�ln�1 − 	�

ln 2
, and �17�

	��� = −
� ln�2� + ln�1 − a�
ln�a� − ln�1 − a�

, �18�

for a=2� / �1+2��. Figure 4 displays the multifractal spectra
for the signals X1D�t�, and X2D�t�, corresponding to the pa-
rameters a1D=2/3, a2D=4/5 in Ref. �21�. The spectra have
the typical inverse U-shaped form.

Conclusions. Elementary cellular automata represent a

paradigm for emergence of complex spatiotemporal dynam-
ics of widespread relevance. We systematically investigated
all 256 elementary cellular automata. As expected, among
those as �nested� periodic or chaotic classified rules �classes
2 and 3� there are various rules that display 1/ f� spectra �see
Table I�. Unexpectedly, on the one hand all rules classified as
complex display no 1/ f� spectra, while on the other hand,
the trivial rule 218 does �being a member of class 1�. It is
important to note that the numerically calculated spectra are
robust against noise, that is, the fit exponents change only
slightly for other initial conditions than a single seed.

Moreover, we generalized the approach of a sum signal
introduced in Ref. �10� for two reasons. First, the investi-
gated fractal signals �6� serve as a fit model for the total
�in�activity of one-dimensional ECA. Second, �Sierpinski�
dynamics in two dimensions is more generic �2,23�. There-
fore we derived analytically the spectra of the two-
dimensional Sierpinski automaton. The tailored signals rep-
resent analytically tractable �nontrivial� 1/ f� generators with
continuously tunable power law decay exponent. Conse-
quently, our analysis may shed light on the arcane mecha-
nisms of 1/ f� spectra.

From our results, we expect that in experimental systems
showing spatiotemporal pattern formation similar to the ECA
patterns, the power spectra of the total �in�activity will ex-
hibit power law behavior within a certain range.
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