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1/f* spectra in elementary cellular automata and fractal signals
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We systematically compute the power spectra of the one-dimensional elementary cellular automata intro-
duced by Wolfram. On the one hand our analysis reveals that one automaton displays 1/f spectra though
considered as trivial, and on the other hand that various automata classified as chaotic or complex display no
1/f spectra. We model the results generalizing the recently investigated Sierpinski signal to a class of fractal
signals that are tailored to produce 1/f* spectra. From the widespread occurrence of (elementary) cellular
automata patterns in chemistry, physics, and computer sciences, there are various candidates to show spectra

similar to our results.
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In 1984 Wolfram introduced the so-called elementary cel-
lular automata (ECA), opening a field still being vividly ac-
tive 20 years thereafter [1]. Wolfram’s more recent popular
book [2] has attracted great attention, although the opinion of
the work’s merits is divided among the scientific community
[3]. ECA are discussed extensively in the context of compu-
tationally irreducibility of physical systems [4], e.g., it is
proven that in the Turing sense [5] rule 110 (being one of the
possible 256 ECA) is an universal computer [1]. Moreover,
possible transformations between difference equations and
(E)CA have been investigated [6]. Among the numerous
physical applications we mention here only (kinetic phase
transitions in) catalytic reaction-diffusion systems [7-10],
deterministic surface growth [11], branching and annihilating
random walks [12], and random boolean networks [13].

It is important to note that Wolfram’s ECA are often stud-
ied for a particular boundary condition on a finite array
which disturbs the pure evolution of an ECA. As a result,
some automata display complex behavior, while other are
simply periodic. Though there is no algorithm for classifying
a given elementary automaton, Wolfram conjectured that
ECA can be grouped into four classes of complexity:

Class 1: steady state; class 2: periodic or nested struc-
tures; class 3: random (‘““chaotic”) behavior; class 4: mixture
of random and periodic behavior.

The first class represents automata that are (for almost all
initial conditions) trivial in the sense being static or finally
evolve to the some steady state. Those rules that belong to
the second class produce simple periodic or self-similar, i.e.,
fractal, structures. The third class includes rules exhibiting
random patterns, e.g., a particular rule (number 30) is used to
generate random numbers in MATHEMATICA. The fourth class
is somehow a mixture of classes 2 and 3 generating the most
complex structures. For more rigorous classifications we re-
fer the reader to the literature [4,14].

Since the coining paper of Bak, Tang, and Wiesenfeld
[15], there has been considerable interest in the long-time
behavior of cellular automata, especially for occurrence of
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long range correlations, and correspondingly for power spec-
tra exhibiting a power law decay S(f)~f“ with a=1.0.
Despite the abundance in nature, systems exhibiting spectra
with exponents near to 1 are poorly understood. While the
mechanisms generating 1/f% spectra may be substantially
different from each other, some models and the observed
1/f“ power laws have become a paradigm for complex dy-
namical systems in general [16].

Definition of ECA. An elementary cellular automaton con-
sists of an infinite one-dimensional lattice of cells being ei-
ther black (1) or white (0), and a deterministic update rule.
At each discrete time step, a cell is updated, x;—>xf1+l, ac-
cording to the state of the next-neighbor sites and its own
state one time step before:

1
X = XX, (1)

where f (the rule) is determined by eight bits being the out-
put of the possible input bits 000, 001, ..., 111. As a conse-
quence, there are 256 (ECA) rules that are named rule 0-255.
In this paper we focus on rules 90 and 150 defined by

X =[x 4+ +x! Jmod 2, (2)
where r=0 defines rule 90 and r=1 rule 150, respectively. As
demonstrated earlier, rule 90 can be interpreted in the context
of catalytic processes. A process (catalysis) is initiated (or
continued) when exactly one neighbor site is active whereas
the process (catalysis) is stopped when too many, i.e., two, or
too less, i.e., no, neighbor sites are active [10].

A similar interpretation may be given for rule 150. Cataly-
sis at x!, is stopped when no or two neighbor sites (now x/
included) are active and it is initiated (or continued) when
one or three sites are active. Note that both rules mimic local
self-limiting reaction processes [9,17].

Spectra of sum signals. It is known that ECA on finite
lattices for various boundary conditions display no 1/f¢
spectra [1]. Rather than evaluating the rules on finite lattices
we calculate the evolution on an infinite lattice. More pre-
cisely, we focus on a sum signal defined as the total (in)ac-
tivity, magnetization, etc. of the whole system:
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TABLE 1. Rules that produce 1/f* spectra. Rules in brackets
belong to one equivalence class. Rules 105 and 150 (bold) produce
spectra with power law exponents about aw=1.3. All other listed
rules exhibit spectra with exponents about &=1.2. The 231 rules not
listed are not capable to produce 1/f“ spectra, e.g., most of the
spectra display no power law decay, or exhibit thermal 1/f> spectra
(see Fig. 2).

Class ECA rule number
218
(26, 82, 167, 181), (154, 210)
3 (18, 183), (22, 151), (60, 102, 153, 195), (90,
165), (122, 161), (126, 129), (146, 182), 105, 150
4

X(n) =2 x. (3)

We have systematically investigated all 256 rules, for local-
ized initial conditions (i.e., single 1, 11, 101, 111, ...), as
follows. The sum signal for nontrivial rules exhibits increas-
ing mean (X), well fitted by a power law in time [24]. Con-
sequently, we focus on the detrended sum signal defined by

Y(1)=X(1) - 1), 4)

where the coefficients of f(f)=at’ are fitted. However, for
some ECA Y(r) possesses an increasing mean variance. Thus
we investigate for each automaton another signal (and its
spectrum)

Z(1) = Y(t)/<Y>{lt/—21+l,t+l}’ )

where 2/ is the width of a sliding window that normalizes the
fluctuations of the detrended signal Y(z) according to the
method of detrended fluctuation analysis (DFA) applied for
nonequilibrium processes [18]. We have calculated the cor-
responding power spectra |X(w)|?, |Y(w)|?, and |Z(w)|? for all
256 ECA. It turns out that that 25 of the 256 rules exhibit
1/f* spectra whereas 231 do not (see Table I). Twenty-three
of those automata that exhibit 1/f“ spectra display Sierpinski
patterns, i.e., well studied self-similar structures [10]. Their
spectra are extensively investigated in Ref. [10] exhibiting
1/f* spectra with exponents 1.15+0.05.

The two other rules, i.e., 105 and 150, show a different
behavior. Here we focus on rule 150 [25]. The first 128 time
steps of the evolution for a single 1 as the initial condition is
depicted in Fig. 1 (upper inset).

It is a Sierpinski-like self-similar structure. However,
the fractal dimension differs from the_Sierpinski gasket
(d=1.58) being the golden mean d=(1+5)/2=1.69. Figure
1 shows also the corresponding signals X(¢) and Z(z). The
spectrum Y(w) is displayed in Fig. 2. For w not too small, the
averaged spectrum exhibits a straight line in the log-log plot
verifying a power law behavior. Depending on the average
process and fit range we obtain a fit exponent of about
a=1.27+0.05. Due to dominating randomness, members of
classes 3 and 4 typically produce thermal 1/f> spectra (see
Fig. 2).
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FIG. 1. The first 128 time steps of the time signal X(r) generated
by rule 150. Upper inset: self-similar structure generated by rule
150 for the first 64 time steps. Lower inset: normalized signal Z(r);
the straight line indicates Z=0.

Fractal signals produce 1/f“ spectra. All ECA that are
capable to produce a self-similar structure exhibit 1/f* spec-
tra. Hence one may naively expect that every (self-similar)
fractal structure produces 1/f“ spectra. However, it is impor-
tant to know that this is not the case. There are many fractals
like the Koch snow flake, Cantor dust, etc., exhibiting no
1/f“ spectra because their respective sum signals simply
grow exponentially [19].

Rather than a geometric approach we focus on fractal sig-
nals itself. Thus we now generalize the recently investigated
Sierpinski signal [10]. As we will see, the generalized signal
is capable to model 1/f“ spectra producing spectra with con-
tinuously tunable power law exponents. More precisely, we
consider the signal

X (1) = 2%, (6)
where o is the jth bit of the binary decomposition of the
discrete time =0, 1, 2, ... . For 6=1 we have shown recently
(‘% 1IN Rule 150
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FIG. 2. Rule 150 and rule 110: Averaged power spectrum of Y(z)
up to 7/8 for T=2"8 using (incommensurable) 1.1¥ bins, i.e., the kth
interval is defined by [[1.1¥],[1.1¥*1T] where the brackets [ ] denote
upwards rounded integer values (ceiling function). The inset shows
the rule 150 spectrum, averaged using 2% bins, i.e., the kth interval
is defined by [2%,2K1—1]. Both averages correspond to a constant
ow/ w ratio. The graphs are well fitted by a power law with expo-
nent a=1.27. The thermal 1/f2 decay of rule 110 (gray) as a typical
member of class 4 is shown for comparison.
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both numerically and analytically that the signal exhibits
1/f* spectra with a close to unity. The special ansatz, Eq.
(6), represents a straightforward generalization of the closed
form for the sum signal of the Sierpinski pattern produced by
rule 90 [10]. In the next paragraph we show that for devia-
tions from d=1 the signal can produce 1/f* spectra within a
wide range of exponents a.

In analogy to the calculation in Ref. [10], we calculate the
periodogram X(w) of the time signal (6) analytically:

2N
X(w)= X e“Xy1)
=0

= E exp(iwz o-_]-2j>X5<E 0'_]-2j>
{00, son_1} j j
N-1
= 2 Il exploj(iw2’ + 61n2)]
{og,....on_1} =0
N-1
=1 X exploj(iw2’ + 51n2)]
Jj=0 {Uj}
N-1
=111 +expiw2’+ 8In2)]. (7)
Jj=0
The absolute value of X(w) simplifies to a trigonometric
product which the logarithm converts into a sum:

N-1
In|X(w)|>= > In[1 +22°+ 2+ cos(w2/)]. (8)
j=0

We roughly estimate the sum in Eq. (8) replacing the sum by
an integral, and substituting y=w?2/,

In|X(w)|? = J

0

N-1

In[1+2%%+2"%cos(w2)]dj  (9)

02 n[1 + 22942149 cog
=f L y]dy. (10)

yIn2

[0}

As In(a+bx) =1In(a)+(b/a)x for |x| <1, we obtain

In(1 +2%9) fsz“ dy
In2 ® y

+ o f w2 cos(y)
(1+2%9)In2 y

In|X(w)|> =

dy. (11

w

The integral over the integral cosine is nearly independent of
the upper boundary for high values of the boundary. Thus we
can substitute the upper boundary 2! by some
N-dependent constant, say cy> 1. Finally, replacing the co-
sine by one yields immediately a rough approximation of the
power spectrum:

IX(w)]2 =~ C/Nw—(2‘+5)/(1+22'9)1n 2 (12)

For a given power law exponent 0 <a<1/In2=1.44, we
obtain & from Eq. (12) as
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FIG. 3. Averaged power spectrum of the detrended signal (6) for
5=1.31184 up to T/8, T=2 using (incommensurable) 1.1 bins.
The inset shows the spectrum, averaged using 2 bins. Both corre-
spond to a constant dw/ w ratio. Fit exponents of about a=0.93. The
corresponding spectrum for the variance detrended signal exhibits
power spectra around a=1.0. The theoretical exponent is a=1.0.

( 141 = a?(In 2)2)
In

aln?2
o= . 13
In2 (13)

To generate signals with goal exponents, e.g., a;=0.8, a,
=1.0, az=1.2, one can use the corresponding value of & ac-
cording to Eq. (13). Figure 3 shows the spectrum of the
detrended signal (6) for 8,=1.31184 (corresponding to «,
=1.0). For §,=1.72425 and 8;=0.902 749 the individual
spectra exhibit similar graphs (not shown). Depending on the
averaging the power law fits giving a;=0.8+0.1, a,
=0.95+0.05, and a3=1.2+0.05, are in good agreement with
the theoretical results.

Two-dimensional automaton. While one-dimensional ex-
perimental setups as in Ref. [17] seem to be quite artificial
for (self-limiting) catalytic processes, two-dimensional dy-
namics is more generic [23]. Consider the Sierpinski dynam-
ics on a (i,/) plane:

t+1 _
LT

P (14)

X i-1,j i,j+

L +xi . Jmod 2.

t
[xi+1,j +X ij-1

For a single 1 as initial condition on a plane the sum signal
Xop()=2;; xf’ ; generates the sequence

Xop(t) = 1,4,4,16,4,16,16,64, ... . (15)

More precisely, the recurrence relation generating Eq. (15) is
given by u,— u,,=(u,,4u,) for uy=(1).

First, if the factor 4 is replaced by 2, the relation becomes
equivalent to the one-dimensional-Sierpinski signal X;(¢) in
Ref. [10]. Second, we obtain X,,(#)=X,,(1)> and therefore
Xop(t1)=Xs5-,(r). Thus the generalized Sierpinski pattern in
two dimensions exhibits 1/f* spectra with exponents around
the value according to Eq. (12) for =2, that is, a=0.679.
We numerically verified the value obtaining exponents
around a=0.7 as expected.

Multifractality. The spectral analysis applied so far as-
sumes implicitly monofractal signals. Multifractal spectra
[20] for signals X ), being binomial multifractal series, can
be calculated analytically [21,22]:
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FIG. 4. (Color online) Multifractal spectra for signals Xp(z)
(black) and Xpp [red (gray)]. Maxima positions: a;p=1.08, ay,
=1.32.

fla)=d(&a)), where (16)

d(§)=_§1H(§)+(1—§)1H(1—§)’and (17)
In2

fe) = aln(2)+In(1 -a) (18)

In(a) -In(1 —a) ’

for a=2%/(1+29). Figure 4 displays the multifractal spectra
for the signals X;p(z), and X,p(7), corresponding to the pa-
rameters a,p=2/3, a,p=4/5 in Ref. [21]. The spectra have
the typical inverse U-shaped form.

Conclusions. Elementary cellular automata represent a
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paradigm for emergence of complex spatiotemporal dynam-
ics of widespread relevance. We systematically investigated
all 256 elementary cellular automata. As expected, among
those as (nested) periodic or chaotic classified rules (classes
2 and 3) there are various rules that display 1/f spectra (see
Table I). Unexpectedly, on the one hand all rules classified as
complex display no 1/f“ spectra, while on the other hand,
the trivial rule 218 does (being a member of class 1). It is
important to note that the numerically calculated spectra are
robust against noise, that is, the fit exponents change only
slightly for other initial conditions than a single seed.

Moreover, we generalized the approach of a sum signal
introduced in Ref. [10] for two reasons. First, the investi-
gated fractal signals (6) serve as a fit model for the total
(in)activity of one-dimensional ECA. Second, (Sierpinski)
dynamics in two dimensions is more generic [2,23]. There-
fore we derived analytically the spectra of the two-
dimensional Sierpinski automaton. The tailored signals rep-
resent analytically tractable (nontrivial) 1/f¢ generators with
continuously tunable power law decay exponent. Conse-
quently, our analysis may shed light on the arcane mecha-
nisms of 1/f¢ spectra.

From our results, we expect that in experimental systems
showing spatiotemporal pattern formation similar to the ECA
patterns, the power spectra of the total (in)activity will ex-
hibit power law behavior within a certain range.

[1] S. Wolfram, Physica D 10, 1-35 (1984); Nature (London) 311,
419 (1984); Rev. Mod. Phys. 55, 601 (1983).

[2] S. Wolfram, A New Kind of Science (Wolfram Media, Cham-
paign, Illinois  2002); http://www.wolframscience.com/
nksonline/toc.html

[3] J. Giles, Nature (London) 417, 216 (2002).

[4] Navot Israeli and Nigel Goldenfeld, Phys. Rev. Lett. 92,
074105 (2004).

[5] The Universal Turing Machine, A Half-Century Survey, edited
by R. Herken (Springer-Verlag, Wien, 1995).

[6] A. Nobe, J. Satsuma, and T. Tokihiro, J. Phys. A 34, L371
(2001).

[7] Robert M. Ziff, Erdagon Gulari, and Yoav Barshad, Phys. Rev.
Lett. 56, 2553 (1986).

[8] Y. Hayase, J. Phys. Soc. Jpn. 66, 2584 (1987); Y. Hayase and
T. Ohta, Phys. Rev. Lett. 81, 1726 (1998); Y. Hayase and T.
Ohta, Phys. Rev. E 62, 5998 (2000).

[9] A. W. M. Dress, M. Gerhardt, N. I. Jaeger, P. J. Plath, H.
Schuster, in Temporal Order, edited by L. Rensing and 1. Jae-
ger (Springer, Berlin, 1984).

[10] Jens Christian Claussen, Jan Nagler, and Heinz Georg
Schuster, Phys. Rev. E 70, 032101 (2004).

[11]J. Krug and H. Spohn, Phys. Rev. A 38, 4271 (1983).

[12] John Cardy and Uwe C. Tiuber, Phys. Rev. Lett. 77, 4780
(1996).

[13] Mihaela T. Matache, and Jack Heidel, Phys. Rev. E 69,

056214, (2004).

[14] V. C. Barbosa, F. M. N. Miranda, and M. C. M. Agostini,
e-print nlin.CG/0408014.

[15] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett. 59, 381
(1987); Phys. Rev. A 38, 364 (1983).

[16] H. J. Jensen, Self-Organized Criticality (Cambridge University
Press, Cambridge, England, 1998).

[17] R. D. Otterstedt, N. I. Jaeger, P. J. Plath, and J. L. Hudson,
Phys. Rev. E 58, 6810 (1998).

[18] K. Hu, P. C. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley,
Phys. Rev. E 64, 011114 (2001).

[19] Benoit B. Mandelbrot, Multifractals and 1/f Noise (Springer,
New York, 1999); Fractals and Chaos (Springer, New York,
2004).

[20] T. C. Halsey et al., Phys. Rev. A 33, 1141 (1986).

[21]J. W. Kantelhardt, S. A. Zschiegner, A. Bunde, S. Havlin, E.
Koscielny-Bunde, and H. E. Stanley, Physica A 316, 87
(2002); S. Zschiegner, Diploma thesis, Justus Liebig Univer-
sitidt, Gottingen, 2002.

[22] J. Feder, Fractals (Plenum Press, New York, 1988).

[23] Y. Gefen, A. Aharony, B. B. Mandelbrot, and S. Kirkpatrick,
Phys. Rev. Lett. 47, 1771 (1981).

[24] In Ref. [10] we have shown this both numerically and analyti-
cally for rule 90. For other rules it is also easy to derive ana-
lytically.

[25] Rule 105 is simply the inverse of rule 150, i.e., fjos(a,b,c)
=1-fis0la,b,c).

067103-4



